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1 Introduction

Head Start is a major federally funded preschool program in the U.S. It is targeted at

children from low-income parents and provides these children and their parents with

schooling, health, nutrition, and social welfare services. Although many studies argue that

investments in early childhood, including preschool, are crucial for many outcomes later in

life (Knudsen et al., 2006; Elango et al., 2016), there are concerns about the effectiveness

of Head Start. Many of the recent concerns are based on results from the Head Start

Impact Study (HSIS), which randomly assigned about 5,000 eligible 3- and 4-year old

children either to a treatment group that was allowed to enroll in a participating Head Start

center or to a control group that did not have access to any of the participating Head Start

centers. The results from this randomized experiment show positive effects of Head Start

on cognitive outcomes immediately after the program, but these positive effects quickly

fade out (Puma et al., 2010). Recently Kline and Walters (2016) and Feller et al. (2016)

show that the finding of fade out is sensitive to the choice of counterfactual treatment.

In addition, as argued by Gibbs et al. (2011), fade out in cognitive test scores does not

necessarily imply that Head Start is ineffective. In fact, a few recent studies that have

evaluated Head Start using quasi-experimental designs find positive effects on medium

and longer term outcomes such as crime and health outcomes (Carneiro and Ginja, 2014;

Currie and Thomas, 1995, 2000; Deming, 2009; Garces et al., 2002; Ludwig and Miller,

2007).

A disadvantage of these quasi-experimental studies is that they rely on stronger as-

sumptions than the randomized experiment of the Head Start Impact Study. In addition,

these studies observe individuals in their teens or early 20s. For certain outcomes, such as

crime, these may be the appropriate ages to measure the outcome variable, while measuring

education in people’s early 20s could lead to truncation because individuals might not

have finished their education. Similarly, labor market outcomes are better measured when

individuals are in their 30s if one wants to reduce life-cycle bias (Bhuller et al., 2017;

Böhlmark and Lindquist, 2006; Haider and Solon, 2006). While these existing long run
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effect studies broadly agree on how Head Start participation affects health outcomes, there

is less agreement regarding the effect on educational attainment and very little evidence on

the effect on subsequent earnings.1

In this study we use the NLSY to investigate the effect of Head Start on long term

education and labor market outcomes and contribute to the existing literature in three ways.

First, we investigate the impact of Head Start on outcomes observed for individuals in

their 30s. Observing individuals in their 30s allows us to look at the effect of Head Start

on wage income measured when everyone has completed formal education, something

which previous studies have not been able to do. Second, we use a partial identification

approach that relies on two weak stochastic dominance assumptions. The major advantage

of using the NLSY is that it allows us to check the validity of these assumptions using data

on pre-Head Start cohorts (born between 1957-1959) who did not have the opportunity

to enroll in Head Start. Third, in contrast to previous studies that have estimated (local)

average treatment effects, we estimate upper and lower bounds around entire cumulative

potential outcome distributions. By focusing on cumulative distributions we can investigate

whether the impact of Head Start differs between the top and bottom end of the outcome

distribution. To our knowledge we are the first to investigate the impact of Head Start across

the distribution of long term outcomes. Bitler et al. (2014) also estimate distributional

impacts of Head Start, but they estimate quantile treatment effects on cognitive and non-

cognitive outcomes in preschool through 1st grade while we focus on long term education

and labor market outcomes.

The empirical analysis in this paper follows a partial identification approach based on

two assumptions. Since Head Start is targeted at disadvantaged children we assume that

the potential outcome distributions of Head Start participants are weakly stochastically

dominated by those of non-participants. This assumption is motivated by the eligibility

criteria of Head Start and is consistent with observed selection into the program (Schnur

1Using the PSID, Garces et al. (2002) and Grosz et al. (2016), report impact estimates of Head Start
participation on earnings for 23 to 25-year-olds, but find no evidence of such a relationship. Section 2 gives
a more detailed overview of the literature.
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et al., 1992). In addition we assume that the potential outcome distributions of individuals

with low educated parents are weakly stochastically dominated by those of individuals

with high educated parents. The first assumption is a variant of a monotone treatment

selection (MTS) assumption, while the second implies that we use parental education

as a monotone instrumental variable (MIV) following Manski and Pepper (2000). By

performing Kolmogorov-Smirnov tests using data on parental background and on outcomes

of pre-Head Start cohorts we find strong support for the validity of these two identifying

assumptions.

Combining the two stochastic dominance assumptions results in lower bounds that

show that Head Start has a positive and statistically significant effect on years of education

and on wage income. We also find that there is important heterogeneity in the effectiveness

of the program. The significant positive effects are concentrated at the lower end of

the distribution, and the effects are strongest for women, blacks and Hispanics. In line

with Kline and Walters (2016) and Feller et al. (2016) we find evidence indicating that

the counterfactual matters: the lower bounds are higher when the counterfactual is only

informal care compared to a counterfactual which is a mixture of informal care and other

preschool.

2 Background and literature

Head start was launched in 1965 by the Office of Economic Opportunity (OEO), with

the goal to prepare children from disadvantaged backgrounds for compulsory schooling.

It started as an eight-week summer program, but from 1966 onwards it continued as a

year-round program. Head Start is targeted at children from low-income families, more

specifically, children from families with income below or on the poverty line are eligible

to participate in Head Start.

Starting with the Westinghouse Study in 1969 there have been numerous evaluations

of the short term impacts of Head Start. The literature on long term effects of Head Start
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Figure 1. Quasi-experimental estimates of Head Start participation on long-run schooling
outcomes
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is however much smaller.2 Figure 1 summarizes the available estimates of the effect of

Head Start participation on long-run schooling outcomes.3 As shown in the top panel of

this figure, there are only four studies, Deming (2009); Garces et al. (2002); Grosz et al.

(2016); Bauer and Schanzenbach (2016), that report estimates for a population that contains

individuals from both genders and all races.4 All four studies estimate family-fixed effect

models and thus rely on variation in Head Start participation between siblings. The middle

and bottom panels of Figure 1 show their effect estimates by race and by gender. The

bottom panel also shows the estimate of a fifth study, Carneiro and Ginja (2014), that uses

a (fuzzy) regression discontinuity design based on income eligibility rules to estimate the

causal effect of Head Start participation.5 This study only report results for men.6

As can be seen in Figure 1, most of these individual quasi-experimental studies on

long-term outcomes find some positive effects of Head Start participation, but they differ

substantially in the specific long-term education outcomes that are affected as well as the

subgroups that are found to benefit from Head Start. For example, while Garces et al.

(2002) find large positive and statistical significant effects on high school graduation and

college enrollment for whites and no effects for blacks, Deming (2009) finds estimates

close to zero for whites and positive and statistically significant effects for blacks. As

pointed out by Elango et al. (2016), it is unclear whether the lack of consistency between

these studies is due to differences in (counterfactual) treatment, differences in population,

2Although these studies also look at other outcomes such as health and crime, we focus our discussion on
the results for schooling and earnings in light of the outcomes in the current paper.

3Figure 1 only reports estimates on the effect of Head Start participation on long run schooling outcomes.
Both Garces et al. (2002) and Grosz et al. (2016) report impact estimates of Head Start participation on
earnings for individuals who are 23-25 years old, but they do not find evidence of such a relationship.

4Ludwig and Miller (2007) exploit a discontinuity in Head Start funding rates at the OEO cutoff for
grant-writing assistance. They report evidence of positive effects on high school completion and college
attendance. Recently Thompson (2018) estimated intention-to-treat effects of average county Head Start
funding per child aged three to six in the early years of the program by exploiting geographic variation in the
timing of Head Start funding. We do not report their estimates in Figure 1 because we focus on the effect of
Head Start participation and it is not clear that these estimates of Head Start funding can be interpreted as the
effect of Head Start participation because the treatment, receipt of Head Start grants and county funding
levels, could have also affected spending per participant.

5Carneiro and Ginja (2014) do not report the effect of Head Start participation, but only first-stage
(Table 2) and reduced form effects (Table 8), Rita Ginja kindly provided the IV-probit effect estimates and
bootstrapped standard errors shown in Figure 1.

6They are unable to estimate effects for women because their first-stages are insignificant.
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or problems related to the empirical approach. This is also highlighted by Grosz et al.

(2016), who show that the local average treatment effects obtained in the family fixed

effect approach rely on families that differ from other Head Start families in size and other

observable dimensions. They also show that this heterogeneity with respect to family size

explains half of the difference between the OLS and family fixed effect estimate.

3 Data

Our analysis uses data from the National Longitudinal Study of Youth 1979 (NLSY79)

which is a sample of 14 to 22-year-olds living in the U.S. in 1979 who were interviewed

annually up to 1994 and every other year after. Although the oldest individuals in the

NLSY79 were born in 1957, the first cohort to become eligible for Head Start was born

in 1960, and we thus base our analysis on the 1960–64 cohorts. We use the full NLSY,

also including the supplemental black and Hispanic samples, because the method used

in the analysis is non-parametric and requires sufficient data to avoid empty cells. The

supplemental samples are also necessary to have large enough sample sizes in the analyses

that stratify by race.7

As outcomes in our analysis, we use individual’s highest observed years of education

as well as yearly wage income both reported in 1994, when the individuals were in their

early 30s.8,9 Information on Head Start participation was also collected in 1994, when

respondents were asked whether they attended the Head Start program as a child, as well

as whether they attended any type of preschool.10

We restrict the main sample to Head Start participants and individuals who did not

7We estimate lower bounds using sample weights in Section 6 below.
8In 1994 the respondents were between 30 and 34 years old.
9For each of the survey years information about the highest completed grade is available. We use the

maximum of the reported highest completed grade over the years 1979-1994 as our measure of years of
education. Yearly wage income is measured by the question “During 1993, how much did you receive from
wages, salary, commissions, or tips from all (other) jobs, before deductions for taxes or anything else?”.

10The actual Head Start question asked “Now think back to when you were a child. To your knowledge,
did you ever attend a Head Start program when you were a preschooler?”. In Section 6 below we show that
self-reported Head Start participation is broadly consistent with historical data, but that there is probably
some underreporting. We also show that misreporting is unlikely to seriously bias our estimates.
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Table 1. Descriptive statistics

Head Start Race

All Yes No White Black Hispanic

Head Start 0.23 0.08 0.49 0.21
Age 32.1 32.0 32.1 32.1 32.1 32.0
Female 0.50 0.52 0.50 0.49 0.51 0.51
Race:
- White 0.49 0.16 0.59
- Black 0.31 0.66 0.21
- Hispanic 0.20 0.17 0.20
Parental Education:
- Less than High School 0.21 0.26 0.19 0.10 0.19 0.50
- Some High School 0.15 0.22 0.13 0.11 0.25 0.11
- High School 0.40 0.38 0.41 0.47 0.40 0.24
- College (1-3 years) 0.12 0.07 0.13 0.14 0.09 0.08
- College (4+ years) 0.12 0.07 0.14 0.18 0.06 0.06
Family income 1978 16,303 11,603 17,759 21,096 10,946 13,077

Years of education 12.8 12.6 12.8 13.1 12.6 12.1
Wage income 22,633 19,637 23,456 25,226 19,057 20,790

N 4,876 1,132 3,744 2,404 1,518 954
Note: Sample sizes for wage income are: 3,781; 815; 2,966; 1,985; 1,060 and 736.

participate in Head Start nor any type of preschool. This means that in the main analysis

we estimate effects of Head Start relative to informal care and not relative to other types of

preschool. We also show results where we include individuals who attended another type

of preschool in the estimation sample.

Basic background information such as age (birth year), gender and race is available

in the data. The respondents also provided information on parental education. Since

education is more often missing for the father than for the mother, the main analysis uses

the highest reported completed grade of either the mother or father as a measure of parental

education which is recoded in the following categories: less than high school, some high

school, high school, 1–3 years of college and 4 or more years of college.

Table 1 reports descriptive statistics on the variables that we use below. First, about one

out of four respondents in our sample attended Head Start. The average respondent was 32
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years old in 1994. Thirty-one percent of respondents is black, 20 percent is Hispanic, and

the remaining half is white. About 20 percent of the individuals in our dataset have parents

whose highest completed education is less than high school, while 15 percent of parents

attended and 40 percent completed high school. Of the remaining 24 percent of parents

with some college education, half completed 4 years or more.

The final two rows of Table 1 report years of education and yearly wage income (in

1994 USD). We see that by 1994 respondents had attained, on average, about 13 years of

education, or slightly more than high school. Reported wage income is on average about

23,000 USD.11

4 Empirical approach

4.1 Non-parametric bounds

Let Yi(h) be individual i’s potential outcome if her Head Start status is h, where h = 1 if

she participates in Head Start and h = 0 otherwise. Let Di equal 1 if individual i actually

participated in Head Start and equal 0 otherwise. The link between the observed outcome

Y and the potential outcomes is given by Yi ≡ Yi(1) ·Di +Yi(0) · (1−Di).

Many studies focus on estimating a specific parameter of the potential outcome dis-

tributions, such as the mean. Instead, we focus on the entire cumulative distribution of

potential education and labor market outcomes. The causal effect of interest is then the

effect of Head Start participation on the probability of obtaining an education or labor

market outcome greater than γ :12

4(γ) = Pr(Y (1)> γ)−Pr(Y (0)> γ) = FY (0)(γ)−FY (1)(γ) (1)

We estimate (1) for values of γ over the whole support of Y (h).

The causal effect is the difference between two cumulative potential outcome distri-

11Sample size is smaller for wage income which is mostly due to non-employment.
12To economize on notation we omit the individual subscript i from hereon.
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bution functions (CDFs); the CDF we would observe with no Head Start as potential

treatment, FY (0) (γ), and the CDF we would observe with Head Start as potential treatment,

FY (1)(γ). By using the law of iterated expectations we can decompose these two cumulative

potential outcome distributions as follows

FY (1)(γ) = F(γ|D = 1) ·Pr(D = 1)+FY (1)(γ|D = 0) ·Pr(D = 0) (2)

FY (0)(γ) = F(γ|D = 0) ·Pr(D = 0)+FY (0)(γ|D = 1) ·Pr(D = 1) (3)

Equations (2) and (3) highlight the identification problem; we observe the cumula-

tive outcome distributions for Head Start participants, F(γ|D= 1), and for non-participants,

F(γ|D= 0). We also observe the proportion of participants, Pr(D= 1), and non-participants

Pr(D = 0). However, we do not observe the cumulative potential outcome distribution for

the participants had they not participated in Head Start, FY (0)(γ|D = 1), nor the cumulative

potential outcome distribution for the non-participants had they participated in Head Start,

FY (1)(γ|D = 0).

The starting point of our analysis is based on a simple fact: CDFs are bounded

between 0 and 1. We can therefore replace the unobserved cumulative potential outcome

distributions, FY (1)(γ|D = 0) and FY (0)(γ|D = 1), by 0 to get lower bounds and by 1 to

get upper bounds on FY (1)(γ) and FY (0)(γ). This implies that we can obtain the following

bounds without adding assumptions (Manski, 1989, 1990):

F(γ|D = 1) ·Pr(D = 1)≤ FY (1)(γ)≤ F(γ|D = 1) ·Pr(D = 1)+Pr(D = 0) (4)

F(γ|D = 0) ·Pr(D = 0)≤ FY (0)(γ)≤ F(γ|D = 0) ·Pr(D = 0)+Pr(D = 1) (5)

To further tighten these No-Assumption (NOA) bounds we continue by imposing two

nonparametric weak stochastic dominance assumptions, proposed by Manski (1997);

Manski and Pepper (2000), which we discuss in turn.

The first assumption is a Monotone Instrumental Variable (MIV) assumption, which is

a weak stochastic dominance assumption with respect to potential outcome distributions as
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a function of a so-called monotone instrumental variable. We use the maximum level of

parental education as a monotone instrumental variable:

Assumption 1. Monotone Instrumental Variable (MIV) – The potential outcome distri-

butions of children with parents of a given education level are weakly stochastically

dominated by those of children with more educated parents:

FY (h)(γ|X = x2)≤ FY (h)(γ|X = x1) ∀γ,∀h,∀x2 > x1 (6)

The MIV assumption states that if everyone would receive the same treatment – either

Head Start (h = 1) or no Head Start (h = 0) – then the probability of obtaining at most γ

years of education would, on average, not be higher for individuals with high educated

parents (X = x2) compared to individuals with low educated parents (X = x1). Note that,

unlike classical IV estimation, this allows for a direct effect of parents’ level of education

on the potential education and labor market outcomes as long as this effect is not negative.

We can exploit this weak stochastic dominance assumption to tighten the No-Assumption

bounds in the following way. We first compute upper and lower bounds on the cumula-

tive potential outcome distributions FY (h)(γ|X = x) for each level of parent’s education

x. Under the MIV assumption FY (h)(γ|X = x∗) is no lower than any of the lower bounds

on FY (h)(γ|X = x) for all x > x∗. We can therefore obtain the MIV lower bound on

FY (h)(γ|X = x∗) by taking the maximum of the lower bounds on FY (h)(γ|X = x) for x≥ x∗.

Similarly we can obtain the MIV upper bound on FY (h)(γ|X = x∗) by taking the minimum

of the upper bounds on FY (h)(γ|X = x) for x≤ x∗.

Suppose parent’s level of education can take on three values; low middle and high.

Figure 2 shows illustrative upper and lower bounds around the cumulative distribution of

a potential education or labor market outcome for a sample of individuals with middle

educated parents, FY (h)(γ|X = mid). Under the MIV assumption FY (h)(γ|X = mid) ≤

FY (h)(γ|X = low) which implies that FY (h)(γ|X = mid) should also be smaller than the

upper bound on FY (h)(γ|X = low). If the upper bound on FY (h)(γ|X = low) is more
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Figure 2. Example of how an MIV can tighten the bounds

informative (and thus smaller) than the upper bound on FY (h)(γ|X = mid) then we can

tighten the upper bound on FY (h)(γ|X = mid) by replacing it by the upper bound on

FY (h)(γ|X = low). In Figure 2 this happens for low values of γ and the dark shaded area

shows where the bounds on FY (h)(γ|X = mid) become sharper.

Under a similar reasoning, we can use the lower bound on FY (h)(γ|X = high) to tighten

the lower bound on FY (h)(γ|X = mid). By the MIV assumption FY (h)(γ|X = mid) ≥

FY (h)(γ|X = high) which implies that FY (h)(γ|X = mid) should also be higher than the

lower bound on FY (h)(γ|X = high). Figure 2 illustrates this tightening on the lower bound

of FY (h)(γ|X = mid) for high values of γ and the corresponding dark shaded area shows

where this bound is sharpened. Finally note that for the lowest value of X the MIV can

only sharpen the lower bound, while for the highest value of X the MIV can only sharpen

the upper bound.

By applying the logic illustrated in Figure 2 to the bounds on each FY (h)(γ|X = x∗)

and then taking the weighted average of the MIV bounds over all x∗ ∈ X , we obtain the
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following aggregate MIV-bounds on FY (h)(γ).

∑
x∗∈X

(
max
x≥x∗

LBFY (h)(γ|X=x)

)
Pr(X = x∗)

≤ FY (h)(γ)≤

∑
x∗∈X

(
min
x≤x∗

UBFY (h)(γ|X=x)

)
Pr(X = x∗) ∀γ,h (7)

The second weak stochastic dominance assumption that we use to tighten the bounds

is the Monotone Treatment Selection assumption, which is motivated by the eligibility

criteria of Head Start as described in Section 2. Equation (8) shows the MTS assumption.

Assumption 2. Monotone Treatment Selection (MTS) – The distribution of potential

outcomes of Head Start participants are weakly stochastically dominated by those of

non-participants:

FY (h)(γ|D = 0,X)≤ FY (h)(γ|D = 1,X) ∀γ,h (8)

The MTS assumption implies that if all individuals would receive the same treatment

– either Head Start (h = 1) or no Head Start (h = 0) – the probability of obtaining an

education or labor market outcome smaller or equal than some value γ should, on average,

be weakly higher for the participants (D = 1) compared to the non-participants (D = 0).

Note that for the MTS assumption to hold it is not required that for each Head Start

participant the potential probability of obtaining an education or labor market outcome

smaller or equal than γ is weakly higher than this potential probability for any of the

non-participants, instead this should hold on average.

Figure 3 illustrates how this MTS assumption can be used to tighten the bounds. Panel

(a) shows how to tighten the bounds around the cumulative potential outcome distribution

in case of Head Start as potential treatment for non-participants; FY (1)(γ|D = 0,X). All we

know without imposing additional assumptions is that it lies between the worst-case lower-

and upper-bounds 0 and 1. However, under the MTS assumption the potential outcome

12
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Figure 3. Illustration of the MTS assumption

distribution of non-participants weakly stochastically dominates the potential outcome

distribution of the participants. This means that we can use the observed cumulative

distribution of the participants, FY (γ|D = 1,X), as an upper bound on the unobserved

cumulative potential outcome distribution for the non-participants, FY (1)(γ|D = 0,X).

Panel (b) shows that under a similar reasoning we can use the observed cumulative

distribution of the non-participants, FY (γ|D = 0,X) as a lower bound on the unobserved

cumulative potential outcome distribution for the participants, FY (0)(γ|D = 1,X). Equation

(9) show these MTS bounds.

FY (γ|D = 1,X) ·Pr(D = 1|X)≤ FY (1)(γ|X)≤ FY (γ|D = 1,X)

FY (γ|D = 0,X)≤ FY (0)(γ|X)≤ FY (γ|D = 0,X) ·Pr(D = 0|X)+Pr(D = 1|X)

(9)

In the analysis we combine the MTS and MIV assumptions by first calculating MTS

upper and lower bounds on FY (h)(γ|X) for each level of parents’ education and then use

these in equation (7) to obtain the combined MTS-MIV bounds. This implies that the MTS

assumption should hold conditional on the level of parents’ education X .

So far we used the MTS and MIV assumptions to tighten the bounds around the two

cumulative potential outcome distribution functions, FY (1)(γ) and FY (0)(γ). To obtain a
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lower bound on the causal effect,4(γ) = FY (0)(γ)−FY (1)(γ), we subtract the upper bound

on FY (1)(γ) from the lower bound on FY (0)(γ).13

While all bounds are consistent under the maintained assumptions, they may have

finite-sample biases when they are obtained by taking maxima and minima over collections

of nonparametric estimates. All bounds using the MIV-assumption are therefore corrected

for finite sample bias using the bootstrap following Kreider and Pepper (2007).14 Finally

we use the methods from Imbens and Manski (2004) to obtain 90% and 95% confidence

intervals around the bounds based on 999 bootstrap replications.15

4.2 Combining two monotone instrumental variables

The MIV-assumption described in Assumption 1 combines the education of the father and

the mother in one monotone instrumental variable by taking the highest reported completed

grade of either the mother or the father. We also report results where we use the highest

reported completed grade of both the mother (XM) and the father (XF ) as two separate

MIV’s, both recoded in the following 3 categories: less than high school, high school and

more than high school. In this case we use the following semi-monotone instrumental

13The upper bounds on the causal effects are never small enough to be informative.
14Kreider and Pepper (2007) suggest to estimate the finite sample bias as b̂ias =

( 1
K ∑

K
k=1 θk

)
− θ̂ , where θ̂

is the initial estimate of the upper or lower bound and θk is the estimate of the kth bootstrap replication. The
bias-corrected MIV-bounds are subsequently obtained by subtracting the estimated biases from the estimated
upper and lower bounds.

15Equation (10) gives their formula for a 95-percent confidence interval:

CI0.95 =
(

l̂b− cIM · σ̂lb, ûb+ cIM · σ̂ub

)
(10)

where l̂b and ûb are the estimated upper and lower bounds and σ̂lb and σ̂ub are the estimated standard errors
of the estimated lower and upper bounds, obtained by 999 bootstrap replications. The parameter cIM depends
on the width of the bounds and is obtained by solving equation (11).

Φ

cIM +

(
ûb− l̂b

)
max{σ̂lb, σ̂ub}

−Φ(−cIM) = 0.95 (11)
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variable assumption

FY (h)
(
γ|XM = xM

2 ,XF = xF
2
)
≤ FY (h)

(
γ|XM = xM

1 ,XF = xF
1
)

∀γ, ∀h, ∀xM
2 ≥ xM

1 and xF
2 ≥ xF

1

(12)

The MIV assumption states that if everyone would receive the same treatment – either

Head Start (h = 1) or no Head Start (h = 0) – then the probability of obtaining at most γ

years of education would, on average, not be higher for individuals with a high educated

father and a high educated mother compared to individuals whose mother, father or both

parents have a lower education level. The assumption states nothing about the stochastic

dominance of the potential outcome distributions if we compare individuals who have a

high educated mother and a low educated father with individuals who have a high educated

father and a low educated mother. The computation of the bounds using two monotone

instruments is very similar to the MIV bounds in equation (7) except that the maxima and

minima are taken over pairs of values of father’s and mother’s education that are ordered.

4.3 Assumption check

The MIV assumption The MTS and MIV assumptions are untestable since they involve

counterfactual outcomes that are not observed for everyone. However, since the pre-Head

Start cohorts in the NLSY79 (i.e. those born from 1957-1959) did not have the opportunity

to enroll in Head Start, the counterfactual outcome without Head Start (Y (0)) is observed

for all these individuals. This allows us to check whether the weak stochastic dominance

assumption of our MIV holds in this sample of pre-Head Start cohorts.

Figure 4 plots the cumulative distribution functions of the long-term outcomes we

consider – education and wage income – by parental education. The distribution functions

need to be weakly ordered for Assumption 1 to hold, with those of individuals with more

educated parents shifted uniformly to the right compared to those of individuals with

less educated parents. The left panel shows these cumulative distributions for years of

education. As can be seen in the figure, there is a clear and strict ordering, which is
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Figure 4. MIV Check – Stochastic dominance of outcomes among pre-Head Start cohorts

consistent with our MIV assumption. The right panel shows the results for wage income.

The cumulative distribution functions of individuals with parents who attained less than or

some high school overlap, and the first column of Table 2 shows we cannot reject that they

are equal using a one-side Kolmogorov-Smirnov test (McFadden, 1989). Note that this is

consistent with our MIV assumption since that only requires weak first order stochastic

dominance. The remaining distribution functions show again strict first-order stochastic

dominance and are therefore consistent with the MIV assumption.

When we estimate bounds on the effect of Head Start separately by gender and by race

and MIV assumption also needs to hold conditional on gender and race. Figures A1 and

A2 in the appendix show the cumulative distributions of education and wage income for

the pre-Head start cohorts for each level of the MIV separately for men, women, blacks,

whites and Hispanics. Although not all distributions show a strict stochastic dominance

ordering, the Kolmogorov-Smirnov tests in Table 2 show that for none of the sub-samples

the null hypothesis is rejected, which is consistent with the validity of the MIV assumption

conditional on gender and conditional on race.

Figures A6 and A7 and Table A1 in the appendix show the MIV-assumption check

described in Section 4.3 for the case of two MIV’s. For years of education as outcome we
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Table 2. Test of the conditional MIV assumption — p-values for H0 : Fj = Fj−1 vs
H1 : Fj > Fj−1

Sample

All Men Women White Black Hispanic

A. Education, j :
2- Some High School 1.000 1.000 0.944 0.978 1.000 0.986
3- High School 1.000 0.998 1.000 1.000 1.000 1.000
4- College (1-3 years) 1.000 1.000 1.000 1.000 0.991 1.000
5- College (4+ years) 0.999 1.000 0.998 0.999 1.000 0.964

B. Wage Income, j :
2- Some High School 0.229 0.132 0.822 0.545 0.648 0.679
3- High School 0.999 0.999 0.984 0.999 0.999 0.980
4- College (1-3 years) 0.996 0.884 0.873 0.995 0.498 0.291
5- College (4+ years) 0.835 0.978 0.611 0.583 0.993 0.936
Note: Reported p-values are from one sided Kolmogorov-Smirnov tests, using data on years of education
and wage income for the pre-Head Start cohorts (born between 1957–1959). Number of observations for
education equal 4,873 (all), 2,425 (men), 2,448 (women), 3,172 (white), 1,044 (black), 657 (Hispanic).
Number of observations for wage income equal 2,153 (all), 1,099 (men), 1,054 (women), 1,189 (white), 582
(black), 382 (Hispanic).

observe a strict ordering with the cumulative distributions of those with higher educated

fathers/ mothers shifted uniformly to the right. For wage income we do not always observe

this strict ordering, but the one-sided Kolmogorov-Smirnov tests in Table A1 show that

for none of the sub-samples the null hypothesis is rejected, which is consistent with the

validity of the two-MIV assumption.

The MTS assumption The main motivation for using the MTS assumption ultimately

comes from the eligibility rules which make that Head Start participants come dispropor-

tionally from disadvantaged backgrounds. Schnur et al. (1992) study selection into Head

Start and their findings support the validity of the MTS assumption. They use data from the

Educational Testing Service Head Start Longitudinal Study (HSLS) which followed over

1,300 children living in poor neighborhoods in three regions in the U.S, during 1969-1970

and preceding possible Head Start enrollment. Children who ultimately attended Head

Start were at a disadvantage on virtually every background familial characteristics and

cognitive measure compared to both i) children who ultimately did not attend preschool
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and ii) children who attended other preschools. Head Start participants were also less

cognitively advanced than children attending other preschools and similar to children

attending no preschool conditional on race, site, and family characteristic variables.

If not all eligible children enroll in Head Start then it is theoretically possible that

on some margin the average potential outcome for the non-participants compared to the

participants would violate the MTS assumption. This requires two things. First, selection

into Head Start conditional on eligibility must be positive. Second, such negative selection

out of Head Start among the eligibles must be large enough to reverse the overall positive

selection out of Head Start through eligibility.

While we argue that the non-participating eligible children will typically be a small

share of the non-participants (making reversion of the MTS assumption unlikely), we do

not have data on eligibility to verify this. However, Schnur et al. also show that conditional

on eligibility selection into Head Start is negative and not positive. In particular, for the

eligible children they find that those “who attended Head Start had significantly lower

cognitive scores, had mothers with lower education, and had fewer rooms per person than

those who attended no preschool. Father absence and maternal education expectations,

although lower in the Head Start group, were not significantly different than in the no

preschool group”.

Both the eligibility rules and the evidence of Schnur et al. (1992) therefore support the

(conditional) MTS assumption. In addition we can investigate the validity of the MTS in

our data by checking whether background characteristics of the Head Start participants

are indeed weakly stochastically dominated by those of non-participants for the different

sub-samples in which the MTS must hold. Figure 5 shows cumulative distributions of

family income measured in 1978 when the individuals were between 14 and 18 years

old.16 For each of the values of the MIV the distribution of family income for the Head

16Family income could potentially be used as a MIV, but we do not do this for the following reasons. First,
information on family income is not available when the individuals are of preschool age, it is only collected
from 1978 and onwards. In addition, eligibility is determined by family income which implies that there are
no or very few Head Start participants for certain values of a MIV that is based on family income. Finally,
the MTS assumption should hold conditional on the MIV, which we think is a stronger assumption when
using family income as MIV compared to using parental education as MIV.
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Figure 5. MTS Check – Conditional (on MIV) CDFs of Family income at age 14-18 for
Head Start participants and non-participants

Table 3. Test of MTS assumption — p-values for H0 : Fj,h=0 = Fj,h=1 vs H1 : Fj,h=0 >
Fj,h=1

Sample

All Men Women White Black Hispanic

j:
1- Less than High School 0.978 0.985 0.921 0.550 0.651 0.303
2- Some High School 0.875 0.914 0.953 0.872 0.344 0.868
3- High School 1.000 1.000 1.000 1.000 0.970 0.941
4- College (1-3 years) 0.995 0.995 0.957 0.940 0.832 0.975
5- College (4+ years) 0.997 0.999 0.960 0.962 0.966 0.718

Unconditional 0.999 0.984 1.000 0.997 0.944 0.845
Note: Reported p-values are from one sided Kolmogorov-Smirnov tests, using data on family income in
1978 for the Head Start cohorts (born between 1960–1965). Number of observations equal 4,028 (all), 2,018
(men), 2,010 (women), 1,957 (white), 1,268 (black), 803 (Hispanic)
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Start participants is stochastically dominated by the distribution of non-participants, which

is in line with the MTS assumption. The first column in Table 3 shows indeed that the

assumption that the distribution of family income of the Head Start participants is weakly

stochastically dominated by that of the non-participants is not rejected at conventional

significant levels. Figures A3 and A4 in the appendix report the cumulative distributions

of family income for the participants and non-participants, separately by gender and by

race. Although in some sub-samples there is no strict stochastic dominance for some of

the values of the MIV, Table 3 shows that the null hypothesis is not rejected in any of

the sub-samples, which implies that we do not reject the MTS assumption conditional on

gender nor conditional on race.

Although not complete, the evidence of Schnur et al. (1992) as well as the checks in

Tables 2 and 3 all support our identifying assumptions.

5 The effects of Head Start on long term outcomes

5.1 A simple example: The effect of Head Start on high school graduation

Before we present our main results under the combined MTS-MIV assumption we set out

to illustrate how the MIV, the MTS and the combined MTS-MIV assumption tighten the

bounds and to clarify which of the assumptions has most identifying power in our data.

We do this for the average treatment effect (ATE) of Head Start on the probability of high

school graduation:

AT E = E [HS(1)]−E [HS(0)]

where HS(h) equals one if someone completes high school under treatment h and is zero

otherwise.

To estimate the average causal effect we need to estimate the mean potential high
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school completion rate E [HS(h)] with Head Start (h = 1) and without Head Start (h = 0)

E [HS(h)] = E [HS(h)|D = h]Pr(D = h)+E [HS(h)|D = 1−h]︸ ︷︷ ︸
unobserved

Pr(D = 1−h)

which involves the unobserved mean counterfactual high school completion rate for Head

Start participants (D = 1) and non-participants (D = 0). Since high school completion rates

are bounded between zero and one, so are the mean counterfactual high school completion

rates E [HS(h)|D = 1−h]. This gives the following No-Assumption (NOA) bounds

E [HS |D = h] ·Pr(D = h)≤E [HS(h)]≤E [HS |D = h] ·Pr(D = h)+Pr(D= 1−h) (13)

which are shown by the first vertical bars in the panels of Figure 6.

Next we can exploit the MIV assumption which implies that if everybody were to be

assigned to the same Head Start treatment then the high school completion rate would on

average not be lower for children whose parents are more educated (X = x2) than the high

school completion rate of children whose parents have less education (X = x1):

E [HS(h) |X = x2]≥ E [HS(h) |X = x1] ∀x2 > x1, h = 0,1 (14)
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To tighten the bounds using the MIV assumption we start out by computing the No-

Assumption bounds for the two mean potential outcomes separately by parental education.

These bounds are shown by the gray vertical bars in the top two panels of Figure 7.

Because the MIV assumption implies that the average potential probability of high school

graduation is nondecreasing in parents’ education, the MIV lower bound for a given level of

parental education X = x is obtained by taking the maximum over all the No-Assumption

lower bounds where the level of parents’ education is less than x. The top-right panel in

Figure 7 shows we can tighten the lower bounds around E [HS(1) |X = x] for the three

highest levels of parents’ education by the lower bound for children whose parents have

some high school.

The MIV upper bounds are obtained in a similar fashion, but now by taking the

minimum over all upper bounds in the sub-samples where parents’ level of education is

higher or equal to the level in the particular sub-sample. As can be seen in the top two

panels in Figure 7, in this particular case the MIV assumption does not result in tighter

bounds around E [HS(0) |X = x] for any level of parents’ education (x). The MIV bounds

around the unconditional potential outcomes – the second set of vertical bars in the panels

of Figure 6 – are obtained by averaging the conditional-MIV bounds over the distribution

of parental schooling.

We can also construct bounds using the MTS assumption which assumes that on

average Head Start participants do not have higher potential high school graduation rates

than non-participants. Above we bounded the counterfactual high school graduation rate

for non-participants E[HS(1)|D = 0] from below by zero. Because the MTS assumes

that non-participants on average do not do worse than participants we can now use the

average high school graduation rate of participants E[HS|D = 1] as a lower bound instead.

Similarly, where before we bounded the counterfactual high school graduation rate for

participants E[HS(0)|D = 1] from above by one, we can now use the observed high school

graduation rate of non-participants E[HS|D= 0] as an upper bound. The third set of vertical

bars in Figure 6 shows that the unconditional MTS assumption substantially tightens the
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Figure 7. Bounds on the mean potential probabilities of high school graduation by MIV

bounds around the two mean potential high school graduation rates.

We can also impose the MTS and MIV assumptions simultaneously. In this case we

first construct the MTS bounds around the two mean potential outcomes separately for

each subsample defined by the MIV and then use these to construct the MIV bounds. In

this case the MTS assumption must hold conditional on parents’ level of education. The

vertical bars in the bottom two panels of Figure 7 show the MTS bounds around the average

potential high school graduation rate conditional on parental education.

Comparing the top and bottom panels of Figure 7 shows that the identifying power of

the MTS assumption varies with parent’s level of education. Especially for E [HS(1) |X = x]

we see that the tightening of the bounds by the MTS assumption is much stronger for higher

levels of parents’ education. The reason becomes clear if we compare the No-Assumption

lower bound on E [HS(1) |X = x], (E [HS |D = 1,X = x] ·Pr(D = 1|X = x)) with the MTS

lower bound (E [HS |D = 1,X = x]). The difference between the No-Assumption lower
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bound and the MTS lower bound depends on the the share of Head Start participants in

the subsample defined by parents’ level of education, Pr(D = 1|X = x). Since the share

of participants varies with parents’ level of education we see that the identifying power

of the MTS assumption varies with the values of our MIV and this is the first reason for

obtaining tighter bounds when combining the MTS and MIV assumptions. If we next take

the weighted average over the sub-sample MTS bounds we get conditional MTS bounds

around E [HS(1)] and E [HS(0)], which are shown by the fourth set of vertical bars in

Figure 6.

We can tighten the bounds further by exploiting the MIV assumption to obtain MTS-

MIV upper and lower bounds on E [HS(1) |X = x] and E [HS(0) |X = x]. These MTS-MIV

bounds are shown by the black capped bars in the bottom two panels of Figure 7 and are

obtained by taking the maximum over all MTS lower bounds where the level of parents’

education is lower or equal to the level in the particular sub-sample and the MIV upper

bounds are obtained by taking the minimum over all MTS upper bounds in the sub-samples

where parents’ level of education is higher or equal to the level in the particular sub-sample.

The dashed lines with arrows in Figure 7 indicate where this tightening occurs.

If we next take the weighted average over these sub-sample MTS-MIV bounds we get

the MTS-MIV bounds around E [HS(1)] and E [HS(0)], which are shown by the final set

of vertical bars in Figure 6. If we compare the MTS, conditional MTS, and the MTS-MIV

bounds in Figure 6, we can see that both steps in the process of combining the MTS and

MIV assumptions have identifying power in the sense that the conditional MTS bounds

are tighter than the unconditional MTS bounds and the MTS-MIV bounds are tighter than

the conditional MTS bounds.

Equation (15) shows how we can obtain bounds around the parameter of interest, the

average causal effect of Head Start on high school graduation

LBE[HS(1)]−UBE[HS(0)] ≤ E [HS(1)]−E [HS(0)]≤UBE[HS(1)]−LBE[HS(0)] (15)
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Figure 8. Bounds around the ACE of Head Start on high school graduation

Figure 8 displays these bounds around the ACE. The tightest bounds, obtained by com-

bining the MTS and MIV assumptions, shows that Head Start participation increases

the probability of high school graduation by at least 3 and at most 34 percentage points.

These bounds on the ACE are not corrected for potential finite sample bias and Fig-

ure 8 also does not report confidence intervals. The bias-corrected MTS-MIV lower

bound on E [HS(1)]− E [HS(0)] as well as the lower bound of the 95 percent confi-

dence interval are shown in Figure 9 below at γ = 11 (since E [HS(1)]−E [HS(0)] =

FY (0)(11)−FY (1) (11)). Bias correction leaves the bounds essentially unchanged. The

average causal effect of Head Start participation on high school graduation is significantly

different from zero as the lower bound of the 95 percent confidence interval equals 0.01.

5.2 Overall effects

The top left panel of Figure 9 shows the MTS-MIV bounds on the cumulative potential

outcome distribution of education for the main sample.17 The light gray area bounds the

cumulative potential outcome distribution without Head Start (FY (0) (γ)), while the dark

gray area bounds the cumulative potential outcome distribution with Head Start (FY (1) (γ)).

This figure shows that the bounds are informative in the sense that there are points on the

17In Figure A8 in the appendix we show results where we use no assumptions, only the MTS and only the
MIV assumption.
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Figure 9. MTS-MIV bounds on the effect of Head Start on education and earnings
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support of education where the lower bound on the cumulative distribution function of

Y (0) is larger than the upper bound on the cumulative distribution function of Y (1).

As explained above, to calculate the lower bound on the effect of Head Start on

achieving at least γ years of education we subtract the upper bound on FY (1)(γ) from the

lower bound on FY (0)(γ). This is the white area in between the shaded areas in Figure 9

where we bound the cumulative potential outcome distributions. The top right panel in

Figure 9 shows the lower bound on this causal effect at the different education margins.

As can be seen in the figure, for γ up to 14 years of education there is a positive lower

bound on the effect of Head Start on obtaining more than γ years of education. The top

right panel in Figure 9 also shows the (lower bound of the) 90 and 95 percent confidence

intervals. We find statistically significant lower bounds on the probability of obtaining

more than 10, 11 and 12 years of education.

The bottom left panel of Figure 9 shows the bounds on the cumulative potential

outcome distributions of wage income. As can be seen from the figure, the lower bound on

FY (0)(γ) and the upper bound on FY (1)(γ) are only separated at the lower end up to values

of γ of about 5,000 USD. The bottom right panel of Figure 9 plots the corresponding

lower bounds on the effect of Head Start on obtaining different levels of income, as well as

the lower bounds of the 90 and 95 percent confidence intervals. It shows that there is a

statistically significant effect of Head Start on wage income but only at the very bottom

end of the distribution.

5.3 Combining two monotone instruments

As described in Section 4.2, it is possible to use mother’s and father’s level of education

as two separate MIV’s instead of combining the two into one monotone instrument. An

advantage of using two separate MIV’s is that it can give more informative bounds. A

disadvantage is that we have to drop 18% of the observations because we can only include

individuals in the sample if we have information on the education of both the mother and

the father.
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Figure 10. MTS- two MIV bounds on the effect of Head Start on education and earnings

28



The top two panels of Figure 10 show the results for years of education when we use

mother’s and father’s education as two separate MIV’s. The top left panel looks very

similar to the top left panel of Figure 9, but from the top right panel it becomes clear that

the bounds using two monotone instruments are tighter than when we combine parent’s

education into one MIV. The results show that Head Start increases high school graduation

(more than 11 years of education) rates by at least 4 percentage points. This is a substantial

effect as 22 percent of the complete sample and 24 percent of the Head Start participants

did not complete high school (obtained less than 12 years of education).

The bottom two panels of Figure 10 report the bounds for wage income as outcome

variable. These bounds are clearly tighter than in Figure 9 and indicate that there is a

substantial and statistically significant positive effect of Head Start on wage income at the

bottom end of the distribution. The biggest effects are found around the 1993 single person

poverty threshold (7,518 USD); the estimated lower bound shows for example that Head

Start increases the probability of earning 7,500 dollar or more by at least 6 percentage

points.

5.4 Effects by gender

Many studies have documented that early childhood interventions affect men and women

differently and also found substantial differences across race. Following these results and

other studies of Head Start we therefore investigate treatment effects for these different

subgroups.

The top right panel of Figure 11 reports the lower bounds on the effect on education for

women. This shows that Head Start increases the probability of completing more than 10

years of education by at least 5 percentage points and high school completion by at least 3

percentage points. The figure also shows a positive lower bound for the year following

high school, but the cumulative potential outcome distributions are not separated at higher

levels of education. Around high school the lower bounds are however all significant at

the 5 percent level. To compare, the bottom right panel of Figure 11 reports the lower
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Note: Number of observations equals 2452 (women) and 2424 (men). Estimated bounds are bias-corrected
using the bootstrap bias-correcting method proposed by Kreider and Pepper (2007). 90 and 95% confidence
intervals are obtained using the method from Imbens and Manski (2004) with 999 bootstrap replications.

Figure 11. The effect of Head Start on years of education – By gender
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using the bootstrap bias-correcting method proposed by Kreider and Pepper (2007). 90 and 95% confidence
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Figure 12. The effect of Head Start on wage income in 1993– By gender
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bounds on the effect on education for men. While the lower bounds on the effect of Head

Start are positive from 11 to 14 years of education, they are smaller than for women and

not statistically significant (the lower bound on the impact on high school completion is

close to being significant at the 10 percent level). We therefore find informative bounds for

women, but not for men.

The top panels of Figure 12 report the bounds on the effect on wage income for women.

We estimate positive lower bounds on the effect of Head Start increasing income beyond

γ , for levels of γ up to 20,000 USD, and up to 15,000 USD the lower bounds amount to

about 3 percentage points. Although these bounds are systematically positive at the lower

end of the distribution, they are relatively imprecise. They are only significant at the 5

percent level for very low values of γ . For men we see in the bottom panel of Figure 12

positive lower bounds on the effect of Head Start increasing earnings beyond levels up

to 7,000 USD, which tend to be statistically significant at the 10 percent level. Although

imprecise these results suggest that Head Start may successfully raise income for women

up to relatively high levels, while for men the bounds suggest some impact around single

person poverty lines.

5.5 Effects by race

Investigating the impact separately by race is in particular relevant in the context of Head

Start since its eligibility criteria target the poor, and consequently a disproportionate share

of Head Start participants are black and to a lesser extent Hispanic. So although there are

hardly any participation disparities by gender, the probability of being exposed to Head

Start is markedly different for children from white, black or Hispanic families as could be

seen in Table 1.

There are also reasons to expect heterogenous effect by race because we find the largest

lower bounds at the bottom end of the distribution, which indicates that those with low

ability and/or low background characteristics tend to benefit the most from participating

in Head Start. That blacks and Hispanics are overrepresented at the lower end of the
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Figure 13. CDF’s of Y(0) in the pre-Head start cohorts and family income by race

distribution is illustrated by Figure 13, which shows the CDFs of education and wage

income for the pre-Head Start cohorts, FY (0), as well as the CDF of family income in 1978

(for the Head Start cohorts) by race. The distributions of Y (0) and family income of whites

stochastically dominate those of blacks and Hispanics, which suggest that we would expect

larger effects of Head Start for blacks and Hispanics.

First consider the top panel in Figure 14 which shows that the bounds on the cumula-

tive potential outcome distributions overlap and that the lower bounds on the effects on

education for whites are essentially all negative and thus not informative. The middle panel

shows the estimated bounds for blacks. Here we see a substantial gap between the bounds

on the cumulative potential outcome distributions which translates into a positive lower

bound on the effect of Head Start for a wide range of education levels. These lower bounds

imply that Head Start increases completed years of education for blacks at all margins

from 9 to 15 years of education. Around high school graduation these lower bounds are

around 5 percentage points and statistically significant at the 5 percent level.

The bottom panel in Figure 14 presents the results for Hispanics. Here we find positive

lower bounds for a similar wide margin of completed education as for blacks. The lower

bound is particularly high at the high school completion margin (i.e. having more than 11

years of education) where we find that Head Start increases the probability of having a

high school diploma or more by at least 10 percentage points.
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Figure 14. The effect of Head Start on years of education– By race
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Figure 15. The effect of Head Start on wage income in 1993– By race
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Figure 15 reports the results for wage income. The top panel shows the results for

whites. Although the lower bounds on the impact on education were uninformative, we do

see positive and statistically significant lower bounds on the impact of Head Start at the

bottom of the wage income distribution where the lower bound on FY (0)(γ) and the upper

bound on FY (1)(γ) are separated for values of γ up to 15,000 USD. The middle panel panel

shows the results for blacks. Here we also see that the lower bound on FY (0)(γ) and the

upper bound on FY (1)(γ) are separated over a similar range as for whites. The lower bounds

tend to be statistically significant around the poverty thresholds. Finally, the bottom panel

reports the estimated bounds for Hispanics. While the estimates show that the cumulative

potential outcome distributions are systematically separated up to 20,000 USD, the lower

bounds are mostly imprecisely estimated.

To summarize, these results show that Head Start has a statistically significant positive

effect on years of education, in particular for blacks and Hispanics. For wage income we

also find evidence that Head Start has beneficial impacts, with effects located at the lower

end of the distribution.

5.6 Effects of Head Start on the treated

In this paper we estimate bounds on the cumulative potential outcome distributions,

FY (0)(γ) and FY (1)(γ), as well as lower bounds on the causal effect of Head Start which

we define as the difference between these two cumulative potential outcome distributions;

4(γ) = FY (0)(γ)−FY (1)(γ). Although our estimated bounds show how the effects of Head

Start vary over the outcome distribution, it is also of interest to know how the effects

for the treated (D = 1) vary over the outcome distribution; 4(γ|D = 1) = FY (0)(γ|D =

1)−FY (1)(γ|D = 1). The causal effect that we focus on in this paper is a weighted average

of the causal effect on the treated and the causal effect on the non-treated:

4(γ) =4(γ|D = 1)P(D = 1)+4(γ|D = 0)P(D = 0)
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which implies that if the effect of Head Start on the probability of obtaining an education

or labor market outcome bigger than γ for the non-treated is not higher than the effect for

the treated (4(γ|D = 1)≥4(γ|D = 0)), the lower bounds reported in this paper can be

interpreted as (conservative) lower bounds on the effects on the treated. Our subsample

analysis suggests that this is indeed the case, because the estimated lower bounds are

highest for the subsamples with the highest shares of Head Start participants (blacks and

Hispanics).

6 Robustness

6.1 The importance of the counterfactual

So far we reported results where we compare the effectiveness of Head Start with informal

care. To see whether the results are sensitive to the choice of the counterfactual, Figure

16 shows results where we include individuals that attended another non-Head-Start

preschool program in the group of non-participants. This means that we compare Head

Start with a counterfactual that is a mixture of informal care and alternative center-based

preschool programs. It also implies that our sample size increases (by 16 percent) and

that our MTS assumption changes a bit because we include the respondents that attended

another preschool in the group of non-participants. Figure A5 in the appendix shows that,

for each of the values of the MIV, the distribution of family income for the Head Start

participants is stochastically dominated by the distribution of the group that includes the

non-participants and those that attended another preschool program. This is in line with

the MTS assumption.

Figure 16 shows that the results are qualitatively very similar to the results in Figure 9.

The lower bounds on the effect of Head Start are however lower in Figure 16, for example,

Head Start increases the probability of high school graduation by at least 3 percentage

points when the counterfactual is informal care compared to 2 percentage points when

the counterfactual is a mixture of informal care and center-based preschool. These results
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Figure 16. MTS-MIV bounds on the effect of Head Start – sample including other
preschool
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confirm that it is important to be explicit about the counterfactual and that the effects of

Head Start seem strongest when informal (home-based) care is the alternative treatment

and are in line with Kline and Walters (2016) and Feller et al. (2016) who find that the

fading out of the effect of Head Start on cognitive test scores is sensitive to the choice of

the counterfactual treatment.

6.2 Survey reporting

As the NLSY is a survey, Head Start participation is self-reported and there might be

misreporting. One way to check this is to compare Head Start enrollment in the NLSY with

national enrollment statistics. This is however not straightforward due to data limitations.

National enrollment counts are by calendar year, while in the NLSY we do not know when

people attended Head Start and can only compute enrollment rates at the cohort level. It

is possible to map annual enrollment to cohort enrollment by making some assumptions.

Using national enrollment statistics gives an upper bound on the national participation rate

of 17 percent in 1969/1970. This assumes that children enroll in Head Start for only 1

year. If children would have enrolled twice (for example when they were four and when

they were five) the implied cohort level enrollment rate would half to about 9 percent.

The enrollment rate for the 1964 cohort (who would have enrolled around 1969/70) in the

NLSY is 13.4 percent and is therefore consistent with possible enrollment rates implied by

the national enrollment statistics.

Across all eligible cohorts in the NLSY we similarly estimate an average national

participation rate of 12.3 percent which is also consistent with what we know about

Head Start participation from the national enrollment data from this period. Self-reported

enrollment in the NLSY is also higher for blacks than for whites (43.2 percent versus

6.4 percent) and among the children of parents who did not attend college than among

children with such a parent (15.4 percent versus 5.8 percent), again patterns that are

broadly consistent with historical data on the characteristics of early Head Start participants

(DHEW, 1968, 1970, 1972).
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Even though self-reported Head Start participation is consistent with historical data,

it seems likely that there is some degree of misreporting. Studies on survey reporting in

other contexts such as the reporting of transfer programs suggest that such programs are

typically under-reported, and that false positives tend to be quantitatively unimportant (see

f.e. Meyer and Mittag, 2019).

It is not possible to correct our estimates from reporting bias without information on the

extend, direction and correlates of misreporting. In our context we would for example need

to know how reporting bias varies by parental education, gender and age. To understand the

potential implication of reporting error for our overall estimates we derive the implications

for the No-Assumption and MTS bounds in Appendix A.2 and we summarize here.

Remember that the effect is defined as

4(γ) = Pr(Y (1)> γ)−Pr(Y (0)> γ) = FY (0)(γ)−FY (1)(γ) (16)

and that we focus on the lower bound of4(γ):

LB4(γ) = LBFY (0)(γ)
−UBFY (1)(γ)

Let D∗ be true Head Start participation, and D reported Head Start participation. We

assume that

Pr(false positive) = P(D = 1,D∗ = 0) = 0

and use the following notation

φ ≡ Pr(false negative) = P(D = 0,D∗ = 1)

p∗ ≡ Pr(D∗ = 1)

p≡ Pr(D = 1) = Pr(D = 1,D∗ = 1)+Pr(D = 1,D∗ = 0) = p∗−φ

In Appendix A.2 we show that the No-Assumption bounds on FY (1) (γ) do not change
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when we allow for false negative misreporting, while the bounds on FY (0) (γ) do change.

The No-Assumption bounds that allow for false negatives are shown below

FY (γ|D = 1)p≤ FY (1) (γ)≤ FY (γ|D = 1)p+(1− p)

FY (γ|D = 0)(1− p)−φ ≤ FY (0) (γ)≤ FY (γ|D = 0)(1− p)+ p+φ

and imply that the No-Assumption lower bound on the effect goes down by φ .

Characterizing the nature of selection into misreporting can help to tighten the bounds.

A natural benchmark is ignorability which assumes that misreporting among the treated is

at random:

FY (h)(γ|D∗ = 1,D = 0) = FY (h)(γ|D∗ = 1,D = 1) = FY (h)(γ|D∗ = 1)

Studies on survey reporting such as Meyer and Mittag (2019) suggest that among the

treated the mis-reporters are weakly positively selected:

FY (h)(γ|D∗ = 1,D = 1)≥ FY (h)(γ|D∗ = 1)≥ FY (h)(γ|D∗ = 1,D = 0)

Assuming that misreporting is ignorable or positive, implies that the potential outcome

distributions of those that report that they did not participate in Head Start while in fact they

did are not stochastically dominated by the outcome distributions of those that correctly

reported to have participated in Head Start. This would be consistent with that those for

whom Head start was not so important are more likely to forget that they participated.

We show in Appendix A.2 that the misreporting corrected MTS lower bound on the

effect assuming that selection into misreporting is ignorable or positive equals

LB4(γ) =

(
1+

φ

(1− p∗)

)
· (FY (γ|D = 0)−FY (γ|D = 1))

which implies that current lower bounds are off by a factor φ

1−p∗ . Taking the upper bound
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on the national employment rate as the true participation rate p∗ = 0.170 and the estimated

participation rate in the NLSY as the reported participation rate p = 0.134 we find that the

maximum relative bias because of misreporting is about 4% and therefore relatively minor.

6.3 Survey weighting

As noted above, the NLSY over-samples blacks and Hispanics which means that the results

based on the NLSY data including over-samples do not necessarily carry over to the U.S.

population. We can obtain bounds around the cumulative potential outcome distributions

of the U.S. population by using the sampling weights provided in the NLSY. It is however

not possible to obtain sampling-design corrected confidence intervals around these bounds

because these need to be bootstrapped for which we need primary sampling units and strata

which are not available in the public use dataset. What we can do is compare the weighted

and unweighted estimates of the lower bounds.18

Both for education and income we find that when stratifying by race using the NLSY

sampling weights gives lower bound estimates which are very similar to the bounds

obtained without sampling weights. Correlation coefficients are about 0.99 for whites,

0.96 for blacks and 0.90 for Hispanics. As the NLSY under-samples whites and we do not

find positive effects of Head Start on education for whites, the bounds based on sampling

weights are not positive with the exception of attaining at least 12 years of schooling where

the lower bound equals 0.02. For wage income, the estimated lower bounds with sampling

weights are very similar or even higher than the estimates obtained without sampling

weights.

In summary, weighting does not appear to affect the race specific lower bounds on the

effect of Head Start on schooling and income. When we compute bounds on the effects of

Head Start using sampling weights these tend to to be uninformative for schooling because

of the uninformative bounds for whites. For income the bounds with and without sampling

weights turn out to be very similar.

18Figure A9 and Figure A10 report estimated lower bounds on the effects of Head Start both with and
without the use of sampling weights.
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7 Conclusion and discussion

Assessing the effect of Head Start on long term outcomes has turned out to be challenging

for at least two reasons. First, long run outcomes are often not observed. Second, it is

difficult to find exogenous variation in Head Start participation that can be exploited to

estimate relevant treatment effects. The few available studies that focus on longer term

outcomes rely on quasi-experimental evidence, and tend to find positive impacts. This

evidence is however scattered and the studies disagree on who benefits and what outcome

margins are affected.

The current paper contributes to this small literature and is the first to consider the

effect of Head Start across the distribution of long term outcomes. It estimates these long

term impacts without relying on quasi-experimental variation in Head Start participation,

but instead relies on two weak stochastic dominance assumptions. This approach results

in bounds around the cumulative potential outcome distributions of education and wage

income. While previous studies on the long term effects of Head Start estimate (local)

average treatment effects, our focus on the distribution of outcomes paints a richer picture

of how Head Start participation affects schooling and earnings, also within subgroups

defined by race or gender. This allows us to assess whether effect heterogeneity across

groups is consistent with effect heterogeneity along the outcome distribution.

The tightest bounds show that Head Start increases high school graduation by at least

4 percentage points and the probability of earning more than the (one-person) poverty

threshold by at least 6 percentage points. The positive lower bounds are concentrated at the

bottom end of the distribution, which suggests that Head Start offers the highest benefits

to those with low skills and/or social background. This is confirmed by our sub-sample

analyses where we find large lower bounds on the payoffs to Head Start for blacks and

Hispanics. Our results therefore indeed show a consistent pattern of effect heterogeneity

and suggest that Head Start benefits those that need it the most.
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A Appendix – Head Start and the distribution of long term education

and labor market outcomes

A.1 Extra results
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Note: Figures based on data on years of education and wage income for the pre-Head Start cohorts (born
between 1957–1959). Number of observations for education equal 2425 (men) and 2448 (women). Number
of observations for wage income equal 1099 (men) and 1054 (women).

Figure A1. MIV Assumption check – by gender
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Note: Figures based on data on years of education and wage income for the pre-Head Start cohorts (born
between 1957–1959). Number of observations for education equal 3172 (white), 1044 (black) and 657
(Hispanic). Number of observations for wage income equal 1189 (white), 582 (black) and 382 (Hispanic).

Figure A2. MIV Assumption Check – by race
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(high school), 227 (college 1-3 years), 219 (college 4+ years) and 2010 (all). Number of observations for
men equal 422 (less than high school), 280 (some high school), 828 (high school), 246 (college 1-3 years),
242 (college 4+ years) and 2018 (all).

Figure A3. Family income and the MIV, for participants and non-participants– By gender
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Note: Number of observations for white equal 201 (less than high school), 208 (some high school), 928
(high school), 289 (college 1-3 years), 331 (college 4+ years) and 1957 (all). Number of observations for
black equal 252 (less than high school), 313 (some high school), 500 (high school), 122 (college 1-3 years),
81 (college 4+ years) and 1268 (all). Number of observations for Hispanic equal 408 (less than high school),
93 (some high school), 191 (high school), 62 (college 1-3 years), 49 (college 4+ years) and 803 (all).

Figure A4. Family income and the MIV, for participants and non-participants– By race
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Note: Number of observations equal 947 (less than high school), 663 (some high school), 1825 (high
school), 554 (college 1-3 years), 669 (college 4+ years) and 4658 (all).

Figure A5. Family income at age 14-18 and the MIV, for Head Start participants and
non-participants (including other preschool)
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Figure A6. MIV Assumption Check, Years of education – Two MIV’s
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Figure A7. MIV Assumption Check, Wage Income – Two MIV’s
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Table A1. Check 2 MIV’s – p-values of tests for H0 : Fj = Fj−1vs H1 : Fj > Fj−1

Education Wage income

Mother (k): Father ( j):
- Some High School High School 0.985 0.971

College (1+) 1.000 0.297
- High School High School 0.932 0.943

College (1+) 1.000 0.819
- College (1+) High School 0.976 0.413

College (1+) 0.999 0.972

Father (k): Mother ( j):
- Some High School High School 1.000 0.964

College (1+) 0.989 0.979
- High School High School 0.999 0.912

College (1+) 1.000 0.147
- College (1+) High School 0.989 1.000

College (1+) 0.998 0.708
Note: Reported p-values are from one sided Kolmogorov-Smirnov test (H0 : Fj = Fj−1 vs H1 : Fj > Fj−1)
separately for sub-samples defined by the values of the other parents education (k), using data on years
of education and wage income for the pre-Head Start cohorts (born between 1957–1959). Number of
observations equals 4132 (education) and 1814 (wage income).
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Figure A8. Bounds on potential outcome distributions – Alternative assumptions
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Table A2. Descriptive statistics, Using sampling weights

Head Start Race

All Yes No White Black Hispanic

Head Start 0.14 1.00 0.00 0.08 0.49 0.20
Age 32.0 32.0 32.1 32.1 32.0 32.0
Female 0.49 0.51 0.49 0.49 0.51 0.49
Race:
- White 0.79 0.41 0.85 1.00 0.00 0.00
- Black 0.15 0.50 0.09 0.00 1.00 0.00
- Hispanic 0.07 0.09 0.06 0.00 0.00 1.00
Parental Education:
- Less than High School 0.16 0.08 0.17 0.18 0.07 0.07
- Some High School 0.13 0.08 0.14 0.14 0.10 0.09
- High School 0.44 0.42 0.45 0.47 0.41 0.24
- College (1-3 years) 0.13 0.20 0.12 0.11 0.25 0.12
- College (4+ years) 0.13 0.22 0.12 0.10 0.17 0.48
Family income 1978 19,321 13,070 20,414 21,363 11,230 13,554

Years of education 13.0 12.6 13.1 13.2 12.6 12.1
Wage income 24,362 20,598 24,929 25,422 19,288 20,883

N 4,876 1,132 3,744 2,404 1,518 954
Note: Sample sizes for wage income are: 3,781; 815; 2,966; 1,985; 1,060 and 736.
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Figure A9. MTS-MIV bounds on the effect of Head Start on Education – Baseline and
weighted estimates
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Figure A10. MTS-MIV bounds on the effect of Head Start on Income – Baseline and
weighted estimates
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A.2 The consequences of treatment misreporting for non-parametric bounds estimation

Misreporting In the following we assume that participants (D∗ = 1) might falsely report

that they did not participate in Head Start but that non-participants (D∗ = 0) will never

falsely report that they attended Head Start:

Pr(false positive) = Pr(D = 1,D∗ = 0) = 0

We use the following notation

φ ≡ Pr(false negative) = Pr(D = 0,D∗ = 1)

p∗ ≡ Pr(D∗ = 1)

p ≡ Pr(D = 1) = Pr(D = 1,D∗ = 1)+Pr(D = 1,D∗ = 0)

= Pr(D = 1,D∗ = 1)

= Pr(D∗ = 1)−Pr(D = 0,D∗ = 1)

= p∗−φ

where p∗ is the true share of Head Start participants in the population and p is the reported

share of participants.

When we allow for misreporting the cumulative potential outcome distributions can be

decomposed as follows:

FY (1)(γ) = FY (1) (γ|D∗ = 1) · p∗+FY (1) (γ|D∗ = 0) · (1− p∗) (17)

FY (0)(γ) = FY (0) (γ|D∗ = 1) · p∗+FY (0) (γ|D∗ = 0) · (1− p∗) (18)

We start with rewriting equation (17) such that we can show how to obtain bounds around

this cumulative potential outcome distribution when we allow for misreporting of Head
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Start participation. Note that we can decompose FY (1) (γ|D∗ = 1) as follows

FY (1) (γ|D∗ = 1) = FY (1) (γ|D∗ = 1,D = 1) ·Pr(D = 1|D∗ = 1)

+FY (1) (γ|D∗ = 1,D = 0) ·Pr(D = 0|D∗ = 1)

= FY (1) (γ|D∗ = 1,D = 1) · Pr(D=1,D∗=1)
Pr(D∗=1)

+FY (1) (γ|D∗ = 1,D = 0) · Pr(D=0,D∗=1)
Pr(D∗=1)

= FY (1) (γ|D∗ = 1,D = 1) · p
p∗ +FY (1) (γ|D∗ = 1,D = 0) · φ

p∗

Since we assume that there are no false positives, we have that

FY (1) (γ|D∗ = 1,D = 1) = FY (1) (γ|D = 1) = FY (γ|D = 1)

Which implies that

FY (1) (γ|D∗ = 1) = FY (γ|D = 1) · p
p∗ +FY (1) (γ|D∗ = 1,D = 0) · φ

p∗
(19)

Substituting for FY (1) (γ|D∗ = 1) in equation (17) gives

FY (1)(γ) = FY (γ|D = 1) · p+FY (1) (γ|D∗ = 1,D = 0) ·φ +FY (1) (γ|D∗ = 0) · (1− p∗)

(20)

Next, we consider the cumulative potential outcome distribution with no Head Start

as potential treatment in Equation (18). Note that we can decompose FY (0) (γ|D∗ = 0) as

follows

FY (0) (γ|D∗ = 0) = FY (0) (γ|D∗ = 0,D = 1) ·Pr(D = 1|D∗ = 0)

+FY (0) (γ|D∗ = 0,D = 0) ·Pr(D = 0|D∗ = 0)

= FY (0) (γ|D∗ = 0,D = 1)

where the last lines follows from the assumption of no false positives (Pr(D = 1|D∗ = 0) =
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0 and Pr(D = 0|D∗ = 0) = 1). We further have that

FY (0) (γ|D = 0) = FY (0) (γ|D∗ = 0,D = 0) ·Pr(D∗ = 0|D = 0)

+FY (0) (γ|D∗ = 1,D = 0) ·Pr(D∗ = 1|D = 0)

= FY (0) (γ|D∗ = 0,D = 0) · Pr(D∗=0,D=0)
Pr(D=0)

+FY (0) (γ|D∗ = 1,D = 0) · Pr(D∗=1,D=0)
Pr(D=0)

= FY (0) (γ|D∗ = 0,D = 0) · 1−p∗
1−p

+FY (0) (γ|D∗ = 1,D = 0) · φ

1−p

Rewriting to get FY (0) (γ|D∗ = 0,D = 0) to the left-hand side of the equation gives

FY (0) (γ|D∗ = 0,D = 0) =
1− p
1− p∗

FY (0) (γ|D = 0)− φ

1− p∗
FY (0) (γ|D∗ = 1,D = 0)

Since we have that FY (0) (γ|D∗ = 0) = FY (0) (γ|D∗ = 0,D = 0) we get

FY (0) (γ|D∗ = 0) =
1− p
1− p∗

FY (0) (γ|D = 0)− φ

1− p∗
FY (0) (γ|D∗ = 1,D = 0) (21)

Finally, substituting for FY (0) (γ|D∗ = 0) in equation (18) gives

FY (0)(γ) = FY (0) (γ|D∗ = 1) · p∗+(1− p) ·FY (0) (γ|D = 0)−φ ·FY (0) (γ|D∗ = 1,D = 0)

(22)

No-Assumption bounds In order to obtain No-Assumption bounds around FY (1)(γ) we

replace the unobserved cumulative potential outcome distributions, FY (1) (γ|D∗ = 0) and

FY (1) (γ|D∗ = 1,D = 0) in equation (20) by 0 and 1.

FY (γ|D = 1) · p≤ FY (1)(γ)≤ FY (γ|D = 1) · p+φ +(1− p∗) (23)

since φ +(1− p∗) =1− p, allowing for false negatives does not change the No-Assumption

bounds around FY (1)(γ).
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In order to obtain the No-Assumption lower bound around FY (0)(γ) we replace the

unobserved cumulative potential outcome distributions in Equation (22), FY (0) (γ|D∗ = 1)

by 0 and FY (0) (γ|D∗ = 1,D = 0) by 1.19 To obtain the No-Assumption upper bound we

replace FY (0) (γ|D∗ = 1) by 1 and FY (0) (γ|D∗ = 1,D = 0) by 0.20

(1− p) ·FY (γ|D = 0)−φ ≤ FY (0)(γ)≤ p∗+(1− p) ·FY (γ|D = 0) (24)

MTS-bounds Under the MTS assumption we have the following

FY (0) (γ|D∗ = 1)≥ FY (0) (γ|D∗ = 0)

FY (1) (γ|D∗ = 1)≥ FY (1) (γ|D∗ = 0)

We can use the MTS assumption to tighten the upper bound on FY (1)(γ), because we can

use FY (1) (γ|D∗ = 1) as an upper bound for FY (1) (γ|D∗ = 0) (as opposed to replacing it by

1 as in the No-Assumption bounds). This implies that we can use Equation (19) as an MTS

upper bound on FY (1)(γ).

FY (γ|D = 1) · p ≤ FY (1)(γ) ≤ FY (γ|D = 1) · p
p∗ +FY (1) (γ|D∗ = 1,D = 0) φ

p∗

Finally we can replace FY (1) (γ|D∗ = 1,D = 0) by 1 to get the MTS bounds

FY (γ|D = 1) · p ≤ FY (1)(γ) ≤ FY (γ|D = 1) · p
p∗ +

φ

p∗
(25)

Similarly we can use the MTS assumption to tighten the lower bound on FY (0)(γ),

because we can use FY (0) (γ|D∗ = 0) as a lower bound for FY (0) (γ|D∗ = 1) (as opposed to

replacing it by 0 as in the No-Assumption bounds). This implies that we can use equation

19Due to the minus sign we get a lower bound by replacing FY (0) (γ|D∗ = 1,D = 0) by 1 (instead of 0).
20Due to the minus sign we get an upper bound by replacing FY (0) (γ|D∗ = 1,D = 0) by 0 (instead of 1).
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(21) as an MTS lower bound on FY (0)(γ).

1− p
1− p∗

FY (0) (γ|D = 0)−FY (0) (γ|D∗ = 1,D = 0) · φ

1− p∗

≤ FY (0)(γ)≤ p∗+(1− p) ·FY (γ|D = 0)

Finally we can replace FY (0) (γ|D∗ = 1,D = 0) by 1 to get the MTS bounds

1−p
1−p∗FY (0) (γ|D = 0)− φ

1−p∗ ≤ FY (0)(γ) ≤ p∗+(1− p) ·FY (γ|D = 0) (26)

Monotone reporting selection Under the monotone reporting selection assumption we

assume that among the treated (D∗ = 1) the mis-reporters are weakly positively selected

FY (h) (γ|D∗ = 1,D = 0)≤ FY (h) (γ|D∗ = 1)≤ FY (h) (γ|D∗ = 1,D = 1)

Using this assumption allows us to tighten the MTS upper bound on FY (1)(γ) because we

can replace FY (1) (γ|D∗ = 1,D = 0) by FY (γ|D = 1) since

FY (1) (γ|D∗ = 1,D = 0)≤ FY (1) (γ|D∗ = 1,D = 1) = FY (γ|D = 1)

where the last equality follows from the assumption of no false positives. This give the

following MTS-MRS bounds on FY (1)(γ)

FY (γ|D = 1) · p≤ FY (1)(γ)≤ FY (γ|D = 1) (27)
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We can also use the MRS assumption to tighten the bounds around FY (0)(γ). Note that

FY (γ|D = 0) = FY (γ|D = 0,D∗ = 0) ·Pr(D∗ = 0|D = 0)

+FY (γ|D = 0,D∗ = 1) ·Pr(D∗ = 1|D = 0)

= FY (γ|D = 0,D∗ = 0) · Pr(D∗=0,D=0)
P(D=0)

+FY (γ|D = 0,D∗ = 1) · Pr(D∗=1,D=0)
Pr(D=0)

= FY (γ|D = 0,D∗ = 0) · 1−p∗
1−p

+FY (γ|D = 0,D∗ = 1) · φ

1−p

= FY (0) (γ|D = 0,D∗ = 0) · 1−p∗
1−p

+FY (1) (γ|D = 0,D∗ = 1) · φ

1−p

= FY (0) (γ|D∗ = 0) · 1−p∗
1−p

+FY (1) (γ|D = 0,D∗ = 1) · φ

1−p

Where the last line follows from the assumption of no false positives. Rewriting to get

FY (0) (γ|D∗ = 0) to the left-hand side gives

FY (0) (γ|D∗ = 0) = FY (γ|D = 0) · 1− p
1− p∗

− φ

(1− p∗)
·FY (1) (γ|D = 0,D∗ = 1)

= FY (γ|D = 0)− φ

1− p∗
·
(
FY (1) (γ|D = 0,D∗ = 1)−FY (γ|D = 0)

)
Under the MTS assumption we have that FY (0) (γ) ≥ FY (0) (γ|D∗ = 0). Substituting the

above implies that

FY (0) (γ)≥ FY (γ|D = 0)− φ

1− p∗
·
(
FY (1) (γ|D = 0,D∗ = 1)−FY (γ|D = 0)

)
≥ FY (γ|D = 0)− φ

1− p∗
· (FY (γ|D = 1)−FY (γ|D = 0))
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where the last line follows from the MRS assumption. We thus have the following MTS-

MRS bounds on FY (0)(γ)

FY (γ|D = 0)− φ

1− p∗
· (FY (γ|D = 1)−FY (γ|D = 0))

≤ FY (0)(γ)≤ p∗+(1− p) ·FY (γ|D = 0)

MTS-MRS lower bound on the effect of Head Start The causal effect is defined as follows

4(γ) = Pr(Y (1)> γ)−Pr(Y (0)> γ) = FY (0)(γ)−FY (1)(γ)

and the lower bound on the causal effect is obtained in the following way

LB4(γ) = LBFY (0)(γ)
−UBFY (1)(γ)

=

(
FY (γ|D = 0)− φ

1− p∗
· (FY (γ|D = 1)−FY (γ|D = 0))

)
− (FY (γ|D = 1))

=

(
1+

φ

1− p∗

)
(FY (γ|D = 0)−FY (γ|D = 1))
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